Abstract

Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana ‘Guariento’) harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I) were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi) in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II) under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting)] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height) of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although additional research is needed to fully understand the relationships between the altered phenotypes and the function of each transgene in multigene transformants.

Highlights

  • The importance of trees on a regional and global scale cannot be overstated

  • Expression of foreign genes in transgenic poplar The expression of each foreign gene was detected by quantitative real-time PCR in the D5-20 and D5-21 transgenic lines, which displayed distinct profiles (Figure 1)

  • Measurements of plant height revealed a 27.43% increase in transgenic lines under normal conditions [70% field capacity (FC)] and 23.68–50.44% under stress conditions (50% or 30% FC) compared with the control line (Table 1)

Read more

Summary

Introduction

The importance of trees on a regional and global scale cannot be overstated. In addition to their pivotal role in terrestrial and some aquatic ecosystems (e.g., mangroves), trees provide abundant commercial products, ranging from building materials to food and medicine [1,2]. Studies based on single-gene transformation have generated large numbers of transgenic plants with enhanced tolerance to various environmental stresses, such as drought, salinity, waterlogging and insects, and have greatly improved our understanding of how plants cope with these adverse stimuli [3,4,5]. Osmoprotectants such as proline, glycine betaine, sucrose and fructan, produced by the expression of distinct genes, could help to moderate the adverse effects of drought and salt stress [3]. Previous studies reported that overexpression of transcription factors, such as CBF1 [8], OsDREB1A [9], SNAC1 [10], NF-YB [11] and DST [12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.