Abstract

O-acetylserine(thiol) lyase (OASTL), a key enzyme of the plant sulfur assimilatory pathway, catalyses the formation of cysteine from sulfide and O-acetylserine. Transgenic hybrid poplar (Populus sieboldi x P. grandidentata 'Y63') plants expressing cys1, encoding a wheat cytosolic OASTL, were developed in order to examine the role of this enzyme in thiol production following hydrogen sulfide or sulfur dioxide exposure and in the extent of damage induced in the plants by these pollutants. The transgenic cys1 plants accumulated up to several-fold higher cysteine and glutathione levels and were significantly more resistant in terms of foliar damage to the pollutants than WT plants. The transgenic poplar also showed higher tolerance to sulfite and hydrogen peroxide and, interestingly, accumulated several-fold higher sulfite reductase transcripts than WT plants in response to sulfur dioxide. These data clearly demonstrate the important role of OASTL and the sulfur reduction pathway in sulfur and oxidative stress amelioration, and support the notion that transgenic trees resistant to such pollutants can be generated for phytoremediation strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.