Abstract

Drought is an abiotic stress that limits plant growth and productivity, and the development of trees with improved drought tolerance is expected to expand potential plantation areas and to promote sustainable development. Previously we reported that transgenic poplars (Populus tremula × P. tremuloides, T89) harboring the stress-responsive galactinol synthase gene, AtGolS2, derived from Arabidopsis thaliana were developed and showed improved drought stress tolerance in laboratory conditions. Herein we report a field trial evaluation of the AtGolS2-transgenic poplars. The rainfall-restricted treatments on the poplars started in late May 2020, 18months after transplanting to the field, and were performed for 100days. During these treatments, the leaf injury levels were observed by measuring photosynthetic quantum yields twice a week. Observed leaf injury levels varied in response to soil moisture fluctuation and showed a large difference between transgenic and non-transgenic poplars during the last month. Comparison of the leaf injury levels against three stress classes clustered by the machine learning approach revealed that the transgenic poplars exhibited significant alleviation of leaf injuries in the most severe stress class. The transgenes and transcript levels were stable in the transgenic poplars cultivated in the field conditions. These results indicated that the overexpression of AtGolS2 significantly improved the drought stress tolerance of transgenic poplars not only in the laboratory but also in the field. In future studies, molecular breeding using AtGolS2 will be an effective method for developing practical drought-tolerant forest trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.