Abstract

A low-affinity and high-capacity Na(+)-dependent glucose transporter (SGLT2) was inserted into the expression vector tagging of green fluorescent protein (EGFP). The protein expression and glucose transport activity were examined in Xenopus oocytes and Chinese hamster ovary (CHO) cells. In Western blotting analysis, EGFP-tagged SGLT2 protein expressed in both Xenopus oocytes and CHO cells. We also observed the EGFP fluorescence in both cells with a confocal laser microscope. To determine the function of EGFP-tagged SGLT2, we measured the uptake of [(14)C]-alpha-methyl glucopyranoside (AMG), a specific substrate for SGLT. The AMG uptake was time-dependently increased and inhibited by phloridzin in the EGFP-tagged SGLT2-expressing cells. The K(m) value of 1.7 mM for AMG and the IC(50) of 2 microM for phloridzin consist with the renal low affinity Na(+)-dependent glucose transporter. These results indicate that EGFP-tagged SGLT2 protein functionally expressed both in Xenopus oocytes and CHO cells, and these models are useful for studying the regulatory mechanisms of glucose reabsorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.