Abstract

Wearable inertial measurement units (IMUs) are used increasingly to estimate biomechanical exposures in lifting-lowering tasks. The objective of the study was to develop and evaluate predictive models for estimating relative hand loads and two other critical biomechanical exposures to gain a comprehensive understanding of work-related musculoskeletal disorders in lifting. We collected 12,480 lifting-lowering phases from 26 subjects (15 men and 11 women) performing manual lifting-lowering tasks with hand loads (0–22.7 kg) at varied workstation heights and handling modes. We implemented a Hierarchical model, that sequentially classified risk factors, including workstation height, handling mode, and relative hand load. Our algorithm detected lifting-lowering phases (>97.8%) with mean onset errors of 0.12 and 0.2 seconds for lifting and lowering phases. It estimated workstation height (>98.5%), handling mode (>87.1%), and relative hand load (mean absolute errors of 5.6–5.8%) across conditions, highlighting the benefits of data-driven models in deriving lifting-lowering occurrences, timing, and critical risk factors from continuous IMU-based kinematics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.