Abstract

Enable accurate estimation of vertical average loading rate (VALR) in runners with one or more wearable inertial measurement units (IMUs). A subject-independent convolutional neural network (CNN) model was developed to estimate VALR from wearable IMUs. Fifteen runners wore IMUs at the trunk, pelvis, thigh, shank, and foot and ran on an instrumented treadmill for combinations of the following conditions: foot-strike (forefoot, mid-foot, rear-foot), step rate (90% to 110% of baseline), running speed (2.4m/s and 2.8m/s) and footwear (standard and minimalist running shoes). Thirty-one IMU placement configurations with combinations of one to five IMUs were evaluated. VALR estimations from the wearable IMUs were compared with force-plate VALR measurements. VALR estimations via the subject-independent CNN model with a single shank-worn IMU were highly correlated (ρ = 0.94) with force-plate VALR measurements and were substantially higher than previously reported peak tibial acceleration correlations with force-plate VALR measurements from shank-worn accelerometers (ρ = 0.44-0.66). Correlation results from the CNN model for a single IMU placed at the foot, pelvis, trunk, and thigh were ρ = 0.91, 0.76, 0.69, and 0.65, respectively. There was no improvement in accuracy from the shank-worn IMU when adding 1-4 additional IMUs from the trunk, pelvis, thigh, or foot. The proposed subject-independent CNN model with a single shank-worn IMU provides more accurate estimation of VALR than previous wearable sensing approaches. This could enable runners to more accurately assess impact loading rates and potentially provide insights into running-related injury risk and prevention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.