Abstract

Introduction: Most running-related injuries are believed to be caused by abrupt changes in training load, compounded by biomechanical movement patterns. Wearable technology has made it possible for runners to quantify biomechanical loads (e.g., peak positive acceleration; PPA) using commercially available inertial measurement units (IMUs). However, few devices have established criterion validity. The aim of this study was to assess the validity of two commercially available IMUs during running. Secondary aims were to determine the effect of footwear, running speed, and IMU location on PPA.Materials and Methods: Healthy runners underwent a biomechanical running analysis on an instrumented treadmill. Participants ran at their preferred speed in three footwear conditions (neutral, minimalist, and maximalist), and at three speeds (preferred, +10%, −10%) in the neutral running shoes. Four IMUs were affixed at the distal tibia (IMeasureU-Tibia), shoelaces (RunScribe and IMeasureU-Shoe), and insole (Plantiga) of the right shoe. Pearson correlations were calculated for average vertical loading rate (AVLR) and PPA at each IMU location.Results: The AVLR had a high positive association with PPA (IMeasureU-Tibia) in the neutral and maximalist (r = 0.70–0.72; p ≤ 0.001) shoes and in all running speed conditions (r = 0.71–0.83; p ≤ 0.001), but low positive association in the minimalist (r = 0.47; p < 0.05) footwear condition. Conversely, the relationship between AVLR and PPA (Plantiga) was high in the minimalist (r = 0.75; p ≤ 0.001) condition and moderate in the neutral (r = 0.50; p < 0.05) and maximalist (r = 0.57; p < 0.01) footwear. The RunScribe metrics demonstrated low to moderate positive associations (r = 0.40–0.62; p < 0.05) with AVLR across most footwear and speed conditions.Discussion: Our findings indicate that the commercially available Plantiga IMU is comparable to a tibia-mounted IMU when acting as a surrogate for AVLR. However, these results vary between different levels of footwear and running speeds. The shoe-mounted RunScribe IMU exhibited slightly lower positive associations with AVLR. In general, the relationship with AVLR improved for the RunScribe sensor at slower speeds and improved for the Plantiga and tibia-mounted IMeasureU sensors at faster speeds.

Highlights

  • Most running-related injuries are believed to be caused by abrupt changes in training load, compounded by biomechanical movement patterns

  • Due to their ease of use and potential to assess biomechanical training loads related to running-related injuries, tibial accelerometers are commonly used in the study of runningrelated injury prevention or rehabilitation (Willy, 2018; Moore and Willy, 2019)

  • Secondary aims were to determine the effect of footwear, running speed, and the location of the inertial measurement units (IMUs) on the vertical peak positive acceleration

Read more

Summary

Introduction

Most running-related injuries are believed to be caused by abrupt changes in training load, compounded by biomechanical movement patterns. Wearable technology has made it possible for runners to quantify biomechanical loads (e.g., peak positive acceleration; PPA) using commercially available inertial measurement units (IMUs). The most ubiquitous class of wearable sensors is the inertial measurement unit (IMU), which consists of an accelerometer, gyroscope, and (sometimes) a magnetometer to measure accelerations, angular velocities, and orientation, respectively. Due to their ease of use and potential to assess biomechanical training loads related to running-related injuries, tibial accelerometers are commonly used in the study of runningrelated injury prevention or rehabilitation (Willy, 2018; Moore and Willy, 2019). Research-grade IMUs are affordable to clinicians and consumers, but few devices have established criterion validity (Willy, 2018; Moore and Willy, 2019)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.