Abstract
The experimental results shown that the mode of droplet disintegration dominates in the laminar flow, and the intensive fragmentation is prevalent in the turbulent flow during almost the entire time of heating. Typical dependences of the time of droplet heatup before disintegration or fragmentation on the temperature, flow rate, structure and regime (laminar and turbulent) are established. The studies are conducted with heated air and flue gases to ensure the application of the research results in the technology of thermal and flame cleaning of liquids from irregular impurities. It is shown that in the flow of combustion products the droplet disintegration occurs 15-20% faster than in the air-flow. In this case, the explosive puffing is more often realized. At high-temperatures (more than 400?C) the characteristics of the explosive droplet disintegration in the studied flows are almost identical (differences in disintegration times do not exceed 5% at different flow turbulization). At lower temperatures, the disintegration times differ 3-4 times for the range Re = 2200-3400. In this case, the more Reynolds number is, the more intense is the fragmentation of two-component droplets throughout the heating time. Due to explosive disintegration of intensely evaporating two-component droplets the growth of the relative area of evaporation was 10-25 times.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have