Abstract

Understanding urban spatial heterogeneity of greenhouse gas (GHG) emissions from sectoral household consumption is crucial to facilitate moves towards low-carbon cities. In this study, we use Xiamen city of China as a case study to reveal the emission characteristics of household GHG as well as spatial heterogeneity. We conducted a face-to-face questionnaire survey and calculated GHG emissions of districts from household energy consumption, food consumption, transportation, housing, household waste and wastewater treatment. The GHG emissions and the amount of urban residential household consumption shows obvious spatial heterogeneity across districts. Total GHG emissions of Xiamen city were 8.39 Mt. CO2e, and average household and per capita of GHG emissions were 8.11 and 2.72 tCO2e, respectively. While total GHG emissions vary from 0.41 to 2.45 Mt. CO2e across six districts and range from 0.16 to 3.39 Mt. CO2e among six sectors. Household GHG emissions differ from 7.08 to 9.40 tCO2e, while the per capita emissions range between 2.41 to 3.14 tCO2e among districts. Results also showed that more urbanized areas with higher population density have larger total urban residential GHG emissions, whereas household emissions were comparatively lower in these areas. In contrast, our study did not show an (inverted-) U relationship or linear relationship between emissions and population, nor between emissions and income level. Household energy use is the largest sector emitting GHGs. These findings will be useful to underpin policy making towards low-carbon cities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.