Abstract
High temperatures, particularly in summer, lead to decreased yields in the industrial application of Pseudomonas plecoglossicida for 2-keto gluconic acid (2KGA) fermentation. To address this, the alterations in the transcriptomics of P. plecoglossicida in response to high-temperature stress were examined at temperatures of 32 °C, 36 °C, and 40 °C. The analysis of differential expression revealed substantial discrepancies in the number of differentially expressed genes (DEGs) at 36 °C (357) and 40 °C (1,487), primarily affecting vital biological functions. Elevated temperatures resulted in a shift in the metabolic processing of glucose, transitioning from extracellular oxidation to intracellular phosphorylation. Notable changes were observed in metabolic pathways, including the pentose phosphate pathway and tricarboxylic acid cycle. A significant observation was the decline in the activity of genes associated with extracellular glucose oxidation, accompanied by an increase in the activity of genes involved in intracellular phosphorylation pathway. This indicates a prompt and dynamic response to high-temperature stress. The investigation revealed notable alterations in genes linked to glucose metabolism, emphasizing the strain's adaptive capabilities to endure high temperatures. The reveal of adaptations are crucial for optimizing 2KGA production in challenging industrial environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have