Abstract

N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA), a derivative of valproic acid (VPA), has been proposed as a potential anticancer agent due to its improved antiproliferative effects in some cancer cell lines. Although there is evidence that VPA is metabolized by cytochrome P450 2C11 rat isoform, HO-AAVPA CYP-mediated metabolism has not yet been fully explored. Therefore, in this work, the biotransformation of HO-AAVPA by CYP2C11 was investigated. Kinetic parameters and spectral interaction between HO-AAVPA and CYP were evaluated using rat liver microsomes. The participation of CYP2C11 in metabolism of HO-AAVPA was confirmed by cimetidine (CIM) inhibition assay. Docking and molecular dynamics simulations coupled to MMGBSA methods were used in theoretical study. HO-AAVPA is metabolized by CYP enzymes (KM =38.94µm), yielding a hydroxylated metabolite according to its HPLC retention time (5.4min) and MS analysis (252.2m/z). In addition, CIM inhibition in rat liver microsomes (Ki =59.23µm) confirmed that CYP2C11 is mainly involved in HO-AAVPA metabolism. Furthermore, HO-AAVPA interacts with CYP2C11 as a type I ligand. HO-AAVPA is stabilized at the CYP2C11 ligand recognition site through a map of interactions similar to other typical CYP2C11 substrates. Therefore, rat liver CYP2C11 isoform is able to metabolize HO-AAVPA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call