Abstract

Hepatocytes and liver microsomes are considered to be useful for investigating drug metabolism catalyzed mainly via glucuronidation. However, there have been few reports comparing the glucuronidation inhibition potentials of drug in hepatocytes to those in liver microsomes. 3'-Azido-3'-deoxythymidine (AZT, zidovudine) glucuronidation (AZTG) is the major metabolic pathway for AZT. In this study, the inhibition potentials of drugs against UDP-glucuronosyltransferase (UGT)-catalyzed AZTG in the hepatocytes and liver microsomes of rats are compared. The AZTG inhibition potentials of diclofenac, diflunisal, fluconazole, indomethacin, ketoprofen, mefenamic acid, naproxen, niflumic acid, and valproic acid in liver microsomes and hepatocytes were investigated using liquid chromatography with tandem mass spectrometry. Diflunisal (inhibition type: noncompetitive) inhibited AZTG most potently in rat liver microsomes (RLMs) with an IC(50) value of 34 microM. The IC(50) values of diclofenac, fluconazole, indomethacin, ketoprofen, mefenamic acid, naproxen, niflumic acid, and valproic acid against AZTG in RLMs ranged from 34 to 1791 microM. Diclofenac, diflunisal, indomethacin, ketoprofen, naproxen, and valproic acid inhibited AZTG in hepatocytes with IC(50) values of 58, 37, 88, 361, 486, and 281 microM, respectively. These values were similar to those obtained in RLMs. In conclusion, the AZT glucuronidation inhibition potentials of drugs in the hepatocytes and liver microsomes of rats were found to be similar, and liver microsomes can be useful for evaluating UGT isozyme inhibition potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.