Abstract

Autonomous on-demand services, such as GOGOX (formerly GoGoVan) in Hong Kong, provide a platform for users to request services and for suppliers to meet such demands. In such a platform, the suppliers have autonomy to accept or reject the demands to be dispatched to him/her, so it is challenging to make an online matching between demands and suppliers. Existing methods use round-based approaches to dispatch demands. In these works, the dispatching decision is based on the predicted response patterns of suppliers to demands in the current round, but they all fail to consider the impact of future demands and suppliers on the current dispatching decision. This could lead to taking a suboptimal dispatching decision from the future perspective. To solve this problem, we propose a novel demand dispatching model using deep reinforcement learning. In this model, we make each demand as an agent. The action of each agent, i.e., the dispatching decision of each demand, is determined by a centralized algorithm in a coordinated way. The model works in the following two steps. (1) It learns the demand’s expected value in each spatiotemporal state using historical transition data. (2) Based on the learned values, it conducts a Many-To-Many dispatching using a combinatorial optimization algorithm by considering both immediate rewards and expected values of demands in the next round. In order to get a higher total reward, the demands with a high expected value (short response time) in the future may be delayed to the next round. On the contrary, the demands with a low expected value (long response time) in the future would be dispatched immediately. Through extensive experiments using real-world datasets, we show that the proposed model outperforms the existing models in terms of Cancellation Rate and Average Response Time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.