Abstract

A comprehensive understanding of carbon assimilation and sequestration in broad-leaved Korean pine forests is crucial for accurately estimating this significant aspect of temperate forests at a regional scale. In this study, we introduced a high-temporal resolution model designed for carbon assimilation insights at the plot scale, focusing on specific parameters such as leaf area dynamics, vertical leaf distribution, photosynthetically active radiation (PAR) fluctuations, and the photosynthetic traits of tree species. The findings reveal that most tree species in broad-leaved Korean pine forests exhibit an inverted U-shaped pattern in leaf area dynamics, with shorter leaf drop periods than leaf expansion events. Leaf distribution varies significantly among different canopy heights, with approximately 80 % of the leaves above 15 m. PAR decreases as canopy height decreases, with PAR at 25 m accounting for about 60 % of the PAR above the canopy. Our framework incorporates a leaf-scale light-response curve and empirical photosynthesis-temperature relationships to estimate forest carbon assimilation on daily and hourly scales accurately. Using the model, we assess the gross primary productivity (GPP), leaf net photosynthetic assimilation (LNPA), and carbon increment (ΔC) of broad-leaved Korean pine forests from 2017 to 2020. The results demonstrate GPP, LNPA, and ΔC values of 21.4 t·ha−1·a−1, 17.4 t·ha−1·a−1, and 4.0 t·ha−1·a−1, respectively. Regarding efficiency, GPP, LNPA, and ΔC per square meter of leaf per year are 179 g, 146 g, and 33 g, respectively. Notably, tree species in the canopy layer of the forest exhibit significantly higher efficiency than those in the understory layer. This research significantly contributes to our understanding of carbon cycling and the responses of forest ecosystems to climate change. Moreover, it provides a practical tool for forest management and the development of carbon sequestration strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call