Abstract

Amyloid plaques are highly heterogeneous in content, size, density, and macromolecular crowding, as they are composed of masses of fibrils and other cellular material. Given this target architecture, the aggregated microenvironment offers a unique imaging target for ligands and positron emission tomography (PET) molecular imaging probes (MIPs). In this work, we address how the heterogeneous microenvironment of a plaque and its evolution may affect the kinetic rate constant of PET MIPs. We argue that macromolecular crowding will result in anomalous diffusion within plaque regions. To account for anomalous diffusion within plaques, we propose a diffusion-limited ligand-receptor compartmental model. Given the current state of knowledge about the pathological progression of Alzheimer's disease (AD), the model's parameters may be a function of the pathological progression of AD, which could result in biased estimates of the true amyloid load. The bias may be partially overcome through evaluation in conjunction with other measures of AD progression including cerebral glucose metabolism rate, neuronal cell loss, and activated inflammatory presence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.