Abstract

This study presents for the first time in humans the biodistribution, clearance and dosimetry estimates of [64Cu]Fibrin Binding Probe #8 ([64Cu]FBP8) in healthy subjects. [64Cu]FBP8-PET previously demonstrated its potential in two recent applications: thrombus imaging and pulmonary fibrosis. This prospective study included 8 healthy subjects to evaluate biodistribution, safety and dosimetry estimates of [64Cu]FBP8, a fibrin-binding positron emission tomography (PET) probe. All subjects underwent up to 3 sessions of PET/Magnetic Resonance Imaging (PET/MRI) 0-2h, 4h and 24h post injection. Dosimetry estimates were obtained using OLINDA 2.2 software. Subjects were injected with 400 MBq of [64Cu]FBP8. Subjects did not experience adverse effects due to the injection of the probe. [64Cu]FBP8 PET images demonstrated fast blood clearance (half-life = 67min) and renal excretion of the probe, showing low background signal across the body. The organs with the higher doses were: the urinary bladder (0.075 vs. 0.091 mGy/MBq for males and females, respectively); the kidneys (0.050 vs. 0.056 mGy/MBq respectively); and the liver (0.027 vs. 0.035 mGy/MBq respectively). The combined mean effective dose for males and females was 0.016 ± 0.0029 mSv/MBq, lower than the widely used [18F]fluorodeoxyglucose ([18F]FDG, 0.020mSv/MBq). This study demonstrates the following properties of the [64Cu]FBP8 probe: low dosimetry estimates; fast blood clearance and renal excretion; low background signal; and whole-body acquisition within 20min in a single session. These properties provide the basis for [64Cu]FBP8 to be an excellent candidate for whole-body non-invasive imaging of fibrin, an important driver/feature in many cardiovascular, oncological and neurological conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.