Abstract
We have identified a new 3MC state bearing two elongated Ru-N bonds to the same ligand in [Ru(bpy)3]2+. This DFT-optimized structure is a local minimum on the 3PES. This distal MC state (3MCcis) is destabilized by less than 2 kcal/mol with respect to the classical MC state (3MCtrans), and energy barriers to populate 3MCcis and 3MCtrans from the 3MLCT state are similar according to nudged elastic band minimum energy path calculations. Distortions in the classical 3MCtrans, that is, elongation of two Ru-N bonds toward two different bpy ligands, are not expected to favor the formation of ligand-loss photoproducts. On the contrary, the new 3MCcis could be particularly relevant in the photodegradation of Ru(II) polypyridine complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.