Abstract
We report the synthesis, characterization, and photochemical reactivity of the triazole-containing complex [Ru(pytz)(btz)2](2+) (1, pytz = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole, btz = 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl). The UV-vis absorption spectrum of 1 exhibits pytz- and btz-centered (1)MLCT bands at 365 and 300 nm, respectively. Upon photoexcitation, acetonitrile solutions of 1 undergo conversion to the ligand-loss intermediate, trans-[Ru(pytz)(κ(2)-btz)(κ(1)-btz)(NCMe)](2+) (2, Φ363 = 0.013) and ultimately to the ligand-loss product trans-[Ru(pytz)(btz)(NCMe)2](2+) (3), both of which are observed and characterized by (1)H NMR spectroscopy. Time-dependent density functional theory calculations reveal that the S1 state of the complex has primarily HOMO → LUMO pytz-based (1)MLCT character. Data show that the (3)MLCT and (3)MC states are in close energetic proximity (≤0.11 eV to 2 d.p.) and that the T1 state from a single-point triplet state calculation at the S0 geometry suggests (3)MC character. Optimization of the T1 state of the complex starting from the ground state geometry leads to elongation of the two Ru-N(btz) bonds cis to the pytz ligand to 2.539 and 2.544 Å leading to a pseudo-4-coordinate (3)MC state rather than the (3)MLCT state. The work therefore provides additional insights into the photophysical and photochemical properties of ruthenium triazole-containing complexes and their excited state dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.