Abstract

The effects of the nonprotonated and protonated calix[6]crypturea 1/1(•)H(+) on the PF6(-) and Cl(-) salts of a luminescent Ru-TAP complex (TAP = 1,4,5,8-tetraazaphenanthrene) were investigated. Thus, the phototriggered basic properties of this complex were examined with 1(•)H(+) in acetonitrile (MeCN) and butyronitrile (BuCN). The Ru excited complex was shown to be able to extract a proton from the protonated calixarene, accompanied by a luminescence quenching in both solvents. However, in BuCN, the Cl(-) salt of the complex exhibited a surprising behavior in the presence of 1/1(•)H(+). Although an emission decrease was observed with the protonated calixarene, an emission increase was evidenced in the presence of nonprotonated 1. As the Cl(-) ions were shown to inhibit the luminescence of the complex in BuCN, this luminescence increase by nonprotonated 1 was attributed to the protection effect of 1 by encapsulation of the Cl(-) anions into the tris-urea binding site. The study of the luminescence lifetimes of the Ru-TAP complex in BuCN as a function of temperature for the PF6(-) and Cl(-) salts in the absence and presence of 1 led to the following conclusions. In BuCN, in contrast to MeCN, in addition to ion pairing, because of the poor solvation of the ions, the luminescent metal-to-ligand charge transfer ((3)MLCT) state could reach two metal-centered ((3)MC) states, one of which is in equilibrium with the (3)MLCT state during the emission lifetime. The reaction of Cl(-) with this latter (3)MC state would be responsible for the luminescence quenching, in agreement with the formation of photosubstitution products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call