Abstract

The Colebrook equation has been used to estimate the friction factor (f) in turbulent fluids. In this regard, many equations have been proposed to eliminate the iterative process of the Colebrook equation. The goal of this article was to perform an evaluation, classification, and proposal of the friction factor for better development of hydraulic projects. In this study, Gene Expression Programming (GEP), Newton-Raphson, and Python algorithms were applied. The accuracy and model selection were performed with the Maximum Relative Error (∆f/f), Percentage Standard Deviation (PSD), Model Selection Criterion (MSC), and Akaike Information Criterion (AIC). Of the 30 equations evaluated, the Vatankhah equation was the most accurate and simplest to obtain the friction factor with a classification of very high, reaching a value of ∆f/f<0.5% and 1.5<PSD<1.6. A new equation was formulated to obtain the explicit f with fast convergence and accuracy. It was concluded that the combination of GEP, error theory, and selection criteria provides a more reliable and strengthened model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.