Abstract
Vapor chamber holds great application potential in the field of heat dissipation for high-power electronic devices. This study developed a novel vapor chamber using 3D-printing technology to enhance heat dissipation for compact electronic devices. The vapor chamber was constructed from aluminum alloy with a structural dimension of 60×60×30mm3. In this work, the extended condensation structure of the vapor chamber was combined with an external cooling structure, resulting in a 729 % increase in the external heat dissipation area compared to the evaporation area in a limited space. Extensive experiments were conducted using deionized water as the working fluid under various cooling conditions and heat loads. The results showed that the vapor chamber was capable of maintaining a low thermal resistance at high power and high heat flux conditions, with a minimum thermal resistance of 0.087 °C/W when the heat load was 1000 W. At a cooling water flow rate of 0.1 L/s, the vapor chamber demonstrated the capacity to withstand a critical heat load of up to 1600 W, with the heat flux of 326 W/cm2. Compared to conventional vapor chambers, this novel vapor chamber is better able to achieve stable and efficient heat dissipation under high power and high heat flux conditions, especially in a limited space.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have