Abstract

The present study aimed to provide new insights into the behavior of high-strength low-alloy steel under dynamic compression and to promote its use in high-stress applications. The dynamic compression response of a Cr-Ni-Mo-V steel under shock stresses ranging from 3.54 GPa to 19.76 GPa was investigated using loading technology. The free surface velocity of the specimen was measured using a displacement interferometer system with the range of 166–945 m/s. The Hugoniot elastic limit (HEL), spalling fracture, and microstructure evolution of specimens under different shock stresses were determined. The results showed that an α→ε phase transition occurred in the material at an impact stress of 15.63 GPa, leading to a change in particle velocity. The relationship between the shock wave velocity and particle velocity was found to be linear. The HEL of the steel was found to be consistent at 2.28 GPa, while the spall strength showed a more complex relationship with the increasing shock stress. Initially, the spall strength increased and then decreased with increasing shock stress before increasing again after the phase transformation. The fracture mode of the steel shifted from brittle fracture to ductile fracture with the increasing impact stresses, which is related to the previous plastic deformation under different impact loads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call