Abstract
Lattice structures are a prime candidate for applications in the medical implant industry due to their versatile mechanical behaviour, which can be tailored to meet specific patient needs and reduce stress shielding, while enabling the natural flow of body fluids. In this work, the mechanical properties of metallic lattices made of five different unit cell types, Cubic (C), Truncated Octahedron (TO), Truncated Cubic (TC), Rhombicuboctahedron (RCO), and Rhombitruncated Cuboctahedron (RTCO), were evaluated under uniaxial compression at three different relative densities, 5%, 15%, and 45%. The evaluation was experimental, and it was compared with previous and new finite element simulations. Specimens for the experimental tests were fabricated in stainless steel 316L by laser powder bed fusion, and stress–strain curves were obtained for the different lattices. The combination of the test results with a critical interpretation of the deformation mechanisms allowed us to confirm that two unit cell types, TO and RTCO, are stable for the whole range of relative densities evaluated. The other three unit cells exhibit more unpredictable behaviour, either due to manufacturing defects or limitations, or because their unstable compression behaviour leads to bucking. For these reasons, TO and RTCO unit cell types are mechanically more adequate for applications in the medical implant industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.