Abstract

This study investigates the dynamic linear, nonlinear responses, and shock damage of two kinds of submerged cylindrical shell models exposed to underwater spherical trinitrotoluene (TNT) charge explosions in a circular lake. Two endplates and a middle plate are mounted on the cylindrical shells to provide support and create two enclosed spaces. The two kinds of cylindrical shell models are unfilled and main hull sand-filled, respectively. Fifteen different tests are carried out according to changing the TNT explosive weights of 1 kg and 2 kg, standoff distances ranging from 3 m to 0.3 m, and two explosion positions, and the measured experimental results are compared with each other. Detailed discussions on the experimental results show that the dynamic responses and damage modes are much different, and the main hull sand-filled cylindrical shell is more difficult to be damaged by the shock wave loading than the unfilled model. The edge cracks are mainly observed at the instrument hull of the main hull sand-filled model, but surface tearing and cracks take place both on the main and instrumental hulls of the unfilled model, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call