Abstract

The security evaluation of some structures shocked by an underwater explosion (UNDEX) frequently plays a key role in some cases, and it is necessary to accurately predict the damage condition of the structure in an UNDEX environment. This study investigates the dynamic linear and non-linear responses and shock damages of two kinds of submerged cylindrical shell models exposed to underwater spherical trinitrotoluene (TNT) charge explosions in a circular lake. Two endplates and a middle plate are mounted on the cylindrical shells to provide support and to create two enclosed spaces. The two kinds of cylindrical shell models with the same geometry characteristics are unfilled and main hull sand-filled. Fifteen different tests are carried out by changing the TNT explosive weights of 1 and 2 kg, standoff distances ranging from 3 to 0.3 m, and two explosion positions. Measured experimental results are compared with each other, and some transformed data are obtained. A detailed discussion on experimental results shows that the dynamic responses and damage modes are much different, and the main hull sand-filled cylindrical shell is more difficult to be damaged by the shock wave loading than the unfilled model. Edge cracks are mainly observed at the instrument hull of the main hull sand-filled model, but surface tearing and cracks are observed on both the main hull and the instrumental hull of the unfilled model, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call