Abstract
This study shows the influence of laser fluence and pulse number on the spatial frequency distribution of laser induced periodic surface structures (LIPSS) on a stainless steel surface. Also the transition of LIPSS to larger self organized, periodic, cone-like structures has been investigated. The experiments were carried out using a Ti:Sapphire femtosecond laser system with 800 nm centre wavelength, a pulse duration of 30 fs and a repetition rate of 1 kHz. Experiments have been carried out on flat, cold-rolled stainless steel surfaces (1.4301) by variation of the laser output power and feed rate. It could be shown, that the transition of low spatial frequency LIPSS (LSFL) to high spatial frequency LIPSS (HSFL) is a continuous process, strongly depending on the laser single pulse fluence and the pulse number. At higher accumulated fluences the transition of LIPSS to larger self organized structures could be observed. As a result, hierarchical structures were created with micrometer-sized cones at the bottom and nanometer-sized LIPSS on top. By further increasing the accumulated fluence, the grooves between the micro structures are widened until the ablation threshold of the alloy is reached. These hierarchical structures could be of considerable value in improving wetting properties of technical surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.