Abstract
The propagation characteristics, viz., phase velocity and attenuation, of leaky surface acoustic waves (LSAWs), excited on the water/sample boundary are obtained through analyzing the V(z) curves measured by line-focus-beam acoustic microscopy. However, different values of these characteristics are obtained, depending upon different ultrasonic devices and operating frequencies employed. The construction mechanism of V(z) curves was investigated experimentally by measuring the amplitude and phase for Teflon to provide an understanding of the device performance for velocity measurements. A V(z) curve measured for Teflon, on which no leaky waves are excited when water is the coupling medium, can be used for the characteristic device response, depending only upon the device parameters and the operating frequencies. From the investigation of the ultrasonic device and the frequency dependences of the characteristic device responses, the phase gradient was found to be directly related to values of measured LSAW velocities. From this result, apparent frequency dependences in LSAW velocity measurements are explained quantitatively for a specimen of gadolinium gallium garnet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.