Abstract

Adsorption chiller dynamics and its effect on the performance are greatly influenced by the adsorbent particle size because they govern both the micro (intra-particle) and macro (inter-particle) heat and mass transfer resistances within the adsorber bed. The net effect of adsorbent particle size and shape on the overall cooling system performance is addressed here. Initial CFD analysis of columnar adsorber bed with silica gel + water as the working pair, assuming uniform spherical adsorbent, showed increased uptake capacity with smaller sized (0.23 mm radius) particles over bigger sized (0.8 mm radius) ones despite smaller vapor penetration depth of the former. Subsequently, the effect of adsorbent particle size and shape on the overall cooling system performance is investigated experimentally in a single-stage one-bed mode for RD 2060 (0.8 mm radius) and RD 3070 (0.23 mm radius) silica gel specimens. Though the smaller size of RD 3070 is favourable for the adsorption kinetics at the particle level, its non-spherical shape and highly non-uniform size distribution resulted in significantly lower permeability and thermal diffusivity of the packed adsorber bed, thus hindering the cyclic steady state throughput. For the same operating conditions, RD 2060 and RD 3070 yield a cooling capacity (CC) of 107 W and 22 W, respectively. Further, the coefficient of performance (COP) drops by 73% in the case of RD 3070. The present study indicates that the adsorber bed design must consider both the adsorbent size and shape, in addition to other system operational parameters to enhance performance indicators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.