Abstract
The CO2 transcritical distributed compression cycle proposal provides a novel approach for refrigerant cooling in traditional transcritical cycles. This paper employed an exhaustive search method to derive the correlation formula for the optimal intermediate pressure. From the perspectives of thermodynamic performance and economics, a comparative analysis was conducted between the cycle established under the optimal intermediate pressure obtained in this study, the cycle based on equal compression ratios in traditional two-stage compression cycles, and the cycle established using the optimal secondary compression ratio method based on low-pressure stage discharge pressure mentioned in previous literature study. The research results indicate that the system's COP calculated using the obtained optimal intermediate pressure correlation method can be improved by up to 7.26% and 5.32%, respectively, compared to the traditional and literature-based methods. The exergy loss with the optimal intermediate pressure method is less than with the other two methods. The entransy dissipation rate of the system obtained using the optimal intermediate pressure correlation method is 24.61% and 50.14% lower than that of the traditional and literature-based methods, respectively. The investment cost of the main components using the optimal intermediate pressure correlation method is about 5% higher than that of the traditional method and about 1% higher than that of the optimal pressure ratio method. However, the total annual cost rate of the system is the lowest. The research enriches and improves the theory of the CO₂ transcritical distributed compression cycle, thereby facilitating the advancement of practical applications based on this cycle theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.