Abstract

Optimal quantum cloning is the process of making one or more copies of an arbitrary unknown input quantum state with the highest possible fidelity. All reported demonstrations of quantum cloning have so far been limited to copying two-dimensional quantum states, or qubits. We report the experimental realization of the optimal quantum cloning of four-dimensional quantum states, or ququarts, encoded in the polarization and orbital angular momentum degrees of freedom of photons. Our procedure, based on the symmetrization method, is also shown to be generally applicable to quantum states of arbitrarily high dimension-or qudits-and to be scalable to an arbitrary number of copies, in all cases remaining optimal. Furthermore, we report the bosonic coalescence of two single-particle entangled states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.