Abstract

Time-dependent deformations such as creep and ratchetting of solder alloys are significant deformation phenomena that need to be understood to ensure the safety and reliability of solder joints in electronic packaging. There is much research on creep deformation of solder alloys, but ratchetting deformation, especially the correlation between creep and ratchetting deformation of solder alloys has not been investigated. This paper discusses the correlation between creep and uniaxial ratchetting deformation to establish the differences in the time-dependent deformation of lead-free and lead-containing solder alloys. Uniaxial ratchetting tests were conducted by cyclic tension–compression tests or cyclic tension–unloading tests at several ratios of the maximum to minimum stresses. Additional creep tests following the uniaxial ratchetting were also conducted to observe the effect of the uniaxial ratchetting on creep deformation. An empirical method to select an optimal lead-free solder alloy is discussed by defining a uniaxial ratchetting strain rate. The additional creep tests also show that the uniaxial ratchetting deformation has a strong correlation to the creep deformation and that the correlation is different for lead-free and lead-containing solder alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call