Abstract

A method to separate plasticity and creep is discussed for a quantitative evaluation of the plastic, transient creep, and steady-state creep deformations of solder alloys. The method of separation employs an elasto-plastic-creep constitutive model comprised of the sum of the plastic, transient creep, and steady-state creep deformations. The plastic deformation is expressed by the Ramberg-Osgood law, the steady-state creep deformation by Garofalo’s creep law, and the transient creep deformation by a model proposed here. A method to estimate the material constants in the elasto-plastic-creep constitutive model is also proposed. The method of separation of the various deformations is applied to the deformation of the lead-free solder alloy Sn/3Ag/0.5Cu and the lead-containing solder alloy Sn/37Pb to compare the differences in the plastic, transient creep, and steady-state creep deformations. The method of separation provides a powerful tool to select the optimum lead-free solder alloys for solder joints of electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call