Abstract

At present, the existing thermal interface materials (TIMs) cannot meet the heat dissipation requirements of some high-power density electronic devices. In this study, Bi-based low melting point alloy was made into a thermal conductive sheet to reduce the interface thermal resistance. The thermal conductivity of a thermal conductive sheet was found to be 37.83 W/(m·K), 10 times higher than Dow Corning 5021 thermal grease. In addition, the surface morphology of the Bi-based alloy thermal conductive sheet was changed in this experiment, which was divided into textured and planer type, and the measured interface thermal resistance values lower than Dow Corning 5021 thermal grease by approximately 30% and 27%, respectively. The results prove this Bi-based alloy thermal conductive sheets have the ideal heat dissipation performance and their wide application prospects in high-power density electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call