Abstract
Organic shale deposited in lacustrine environments in China contains large amounts of shale gas, and organic matter (OM) pores are the main storage units for this gas. The pore characteristics of samples from hydrous pyrolysis experiments of lacustrine shale were analysed via a combination of mercury intrusion, low-pressure nitrogen, and carbon dioxide adsorption. An original lacustrine shale sample was collected from the upper Triassic Chang 7 member in the Ordos Basin. Four aliquots were separated from the original shale and artificially heated to a higher maturity using hydrous pyrolysis. The results suggest the following: (1) The conversion of OM to hydrocarbon compounds (HC) improves the mesopore (2–50 nm) size distribution (meso-PSD) and micropore (<2 nm) size distribution (micro-PSD) as OM maturity increases. Micro-PSD promotion increases when the total organic carbon is low. (2) The total pore volumes (PV) of the heated samples increase and are nearly identical, indicating that most new pore formation occurs in catagenesis during the conversion of OM to oil and cracked oil to gas. Macropores (>50 nm) and mesopores primarily contribute to the total PV, and the positive and negative balance controls their contribution throughout the evolution toward OM maturity. (3) The conversion of OM to HC results in an initial increase in the total pore specific surface area (SSA), followed by a decrease. Mesopores primarily contribute to the total pore SSA at the stages of oil and wet gas-catagenesis, but are gradually replaced by micropores. (4) A well-developed micro-PSD increases pore connectivity and shortens flow paths; however, having both well-developed micro- and meso-PSD deteriorates pore connectivity and has an uncertain effect on the flow paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.