Abstract

Organic geochemistry experiments, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), N2 adsorption, CO2 adsorption, and two-dimensional nuclear magnetic resonance (2D NMR) were performed on ten Chang 7 shale samples (Longdong area, Ordos Basin) to elucidate their pore structure and the characteristics of oil occurrence. Moreover, the factors influencing free oil were discussed, and an occurrence model was established. FE-SEM analysis reveals that the pore types include interparticle pores, intraplatelet pores within clay aggregates, rare fracture pores, and organic matter (OM) pores. The pores are predominantly slit-shaped. The development of micropores was mainly contributed to by OM. Quartz and clay minerals influence the development of macropores and mesopores, feldspar mainly controls macropore development, and pyrite most strongly affects micropore development. Micropores and mesopores constitute the main total pore specific surface area, while mesopores and macropores are the main contributors to the total pore volume. Pores > 2 nm are the main storage spaces for shale oil, and free oil mainly occurs in pores > 20 nm. Adsorbed oil and free oil were assessed by NMR T1–T2 mapping. The adsorbed oil signal intensities range from 7.5–23.4 a.u. per g of rock, and the free oil signal intensities range from 4.4–23.2 a.u. per g of rock. The free oil proportions are 15.9–70.6% (average of 44.2%). The free oil proportion is negatively correlated with the clay mineral content and total organic carbon (TOC) content but positively correlated with the saturated hydrocarbon content and volume of pores > 20 nm. The results of this study could help optimize favorable shale oil target areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call