Abstract
New materials require the use of advanced technology in manufacturing complex shape parts. One of the modern materials widely used in the tool industry for injection molds or hot stamping dies is high conductivity tool steel (HTCS) 150. Due to its hardness (55 HRC) and thermal conductivity at 66 W/mK, this material is difficult to machine by conventional treatment and is being increasingly manufactured by nonconventional technology such as electrical discharge machining (EDM). In the EDM process, material is removed from the workpiece by a series of electrical discharges that cause changes to the surface layers properties. The final state of the surface layer directly influences the durability of the produced elements. This paper presents the influence of EDM process parameters: discharge current Ic and the pulse time ton on surface layer properties. The experimental investigation was carried out with an experimental methodology design. Surface layers properties including roughness 3D parameters, the thickness of the white layer, heat affected zone, tempered layer and occurring micro cracks were investigated and described. The influence of the response surface methodology (RSM) of discharge current Ic and the pulse time ton on the thickness of the white layer and roughness parameters Sa, Sds and Ssc were described and established.
Highlights
Electrical discharge machining (EDM) is a modern approach to manufacturing materials that are difficult to machine through conventional methods
In the EDM process, material is removed from the workpiece through a series of electrical discharges occurring in the gap between the working electrode and the workpiece
The experimental studies conducted were focused on the surface layer properties of high thermal conductivity tool steel HTCS 150 after electrical discharge machining
Summary
Electrical discharge machining (EDM) is a modern approach to manufacturing materials that are difficult to machine through conventional methods. The EDM is included in a group of non-conventional technology with electrochemical machining [1,2,3], wire electrical discharge machining [4] and friction-welding [5,6]. In the EDM process, material is removed from the workpiece through a series of electrical discharges occurring in the gap between the working electrode and the workpiece. Electrical discharges cause local melting and evaporation in both the workpiece and material of the working electrode (tool). During this process, there are hundreds of electrical discharges
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.