Abstract

The electrical discharge machining (EDM) process is, by far, the most popular amongst the non-conventional machining processes. The technology is optimum for accurate machining of complicated shapes in hard materials, required in the modern industry. However, although a lot of EDM machines are widely applied for many years, fundamental knowledge of the process is still limited. The complex nature of the process involves simultaneous interaction of thermal, plasma temperature and electromagnetism factors, which makes the machining process modeling very difficult. In this paper, based on the analysis of the electric discharge machining (EDM) process, a plate capacitor model is constructed to describe the discharging process in a pulse time. The whole EDM process is divided into four stages, successively as interelectrode electric-field establishment, electric discharge channel formation, stable EDM and deionization, the interaction of each stage and the distribution function of EDM energy are deduced using the field electron emission theory. For the purpose of analyzing the effect of the single factor, a set of machining through-hole experiments were carried out and investigated. The study shows that critical electric-field intensity and the effective discharging time rate play major roles on the improvement of machining efficiency; the model can explain the differences of machining efficiency using different materials of tool pole and different EDM parameters; and the theoretical results are concordant with the experimental data well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call