Abstract

Journal bearings are widely applied in different rotating machineries. These bearings allow for transmission of large loads at mean speed of rotation. These bearings are susceptible to large amplitude lateral vibration due to self-exited instability which is known as oil whirl or synchronous whirl. This oil whirl depends on many parameters such as oil film thickness, viscosity of lubricant, load on bearing, inertia of fluid etc. out of which oil film thickness plays an important role in operation of Journal bearings. As oil film thickness decreases metal to metal contact occurs this further can damage the journal bearing. So during the operation minimum oil film thickness should be maintained which can avoid the metal to metal contact and further increases the life of bearing. This paper presents a theoretical calculation of oil film thickness and experimental verification of same on journal bearing test rig. Different journal speeds and loads are considered for the analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call