Abstract

ABSTRACTThis study investigated the tribological characteristics of journal bearings exclusively for automotive applications under the influence of a synthetic lubricant (SAE20W40) and chemically modified rapeseed oil (CMRO) as a biolubricant, dispersed with TiO2, WS2, and CuO nanoparticles used as antiwear additive. The effects of synthetic and nanobased biolubricants on the tribological behavior of the hydrodynamic journal bearing were examined using a journal bearing test rig by measuring the coefficient of friction, oil film thickness, and wear under a load of 10 kN and a speed of 3,000 rpm. The test results show that CuO nanoadditives that are added to the biolubricant exhibit outstanding wear and friction reduction behavior, better than that with synthetic lubricants as well as other nanobased biolubricants. The inclusion of CuO nanoparticles in the biolubricant decreased the coefficient of friction by 27% and wear by about 47% compared to a synthetic lubricant. Additionally, investigations were performed using atomic force microscopy (AFM) and scanning electron microscopy (SEM) to study the surface morphology and surface roughness behavior of the tested bearing surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call