Abstract

A method for simulating localized convective heating in convective heat-assisted single-point incremental forming (CHASPIF) is developed in this research. Localized convective heating in CHASPIF is a type of generic spot heating problem, which is found in manufacturing processes such as welding and laser heating. Existing approaches are not suitable for convective heating, as the heat flux is not constant and depends on the temperature difference between the source and the target surface. In this study, the heat load is simulated by applying a distribution of convective heat transfer coefficient (HTC) values that are displaced and oriented along the target surface to simulate localized heating. The HTC values are experimentally determined using a heat flux sensor and approximated as a series of sectors to create a heat spot profile which is implemented in ANSYS. The heat load profile is demonstrated using two scenarios in which the tool moves in a spiral and a linear path, and is able to predict temperatures with a maximum error of ± 4.358 °C. This method can be used as part of a temperature-dependent simulation model for heat-assisted single-point incremental forming and can also be used in simulating generic spot heating applications. In the future, the accuracy of the model will be improved by considering the variation of HTC values with deformation of the blank, non-linear transient response of the hot air source, reducing discretization errors, and uncertainties in the HTC data collection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.