Abstract

The present study reports an experimental investigation carried out for the thermal management of cylindrical lithium-ion battery simulators using aluminum oxide (nano particle)-eicosane (phase change material) composites. The experiment involves varying the power input from 4 to 10 W in 2 W increments and adjusting the weight percentage of nanoparticles (wt%) from 0.5 to 0.9 in 0.2 wt% intervals. The examination of battery temperature evolutions in response to heating power, a comprehensive heat transfer analysis incorporating the Nusselt number, the determination of the maximum temperature difference, thermal resistance analysis, and the exploration of temperature variations in the absence of Phase Change Material (PCM) are considered. The results show that an increase in the weight percentage of alumina nanoparticles in phase-change material cannot always improve the thermal performance. The results of the present study give guidelines for designing battery thermal management systems. The power levels used in the experiment vary from 4 W to 10 W in steps of 2 W. For a power level of 4 W, the heat flux is 1.088 kW/m2, and for a power level of 10 W, the heat flux is 2.72 kW/m2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.