Abstract

In this study, we investigated plasmonic field localization with trapezoidal nanopatterns under normal incident light excitation to find optimum structures for sensing and imaging. A finite element method was used to calculate the fundamental characteristics of the localized surface plasmon with varied trapezoidal nanopatterns. First, we describe how to localize the plasmonic fields on the trapezoidal patterns and then report our results from the investigation of the optimum properties of the nanopatterns for maximized field intensity. Initially, we expected that maximized field localization would lead to enhancement of the sensing sensitivity or imaging resolution in plasmon-based sensing and imaging systems. However, more interestingly, we found a field cancellation effect under specific modality conditions through the simulation. Thus, we thoroughly investigated the principle of the effect and extracted the modality conditions that induced field cancellation. In addition, specific modality conditions of nanopatterns that could be fabricated with conventional lithographic methods were numerically determined. Then, the field cancellation effect was experimentally verified using scanning nearfield optical microscopy. The results indicate that trapezoidal nanopatterns bring about enhanced field localization at the shaper edge of nanopatterns than do conventional rectangular nanopatterns and that plasmonic field cancellation can be observed under specific modality conditions of nanopatterns, even for conventional rectangular nanopatterns. Thus, it is suggested that careful fabrication and maintenance are needed to obtain strong plasmonic localization. Finally, the feasibility of providing a novel sensing platform using the field cancellation effect is suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.