Abstract

Fringing reefs play an important role in protecting the coastal area by inducing wave breaking and wave energy dissipation. However, modeling of wave transformation and energy dissipation on this topography is still difficult due to the unique structure. In the present study, two-dimensional laboratory experiments were conducted to investigate the cross-shore variations of wave transformation, setup, and breaking phenomena over an idealized fringing reef with the 1/40 reef slope and to verify the Boussinesq model under monochromatic wave conditions. One-layer and two-layer model configurations of the Boussinesq model were used to figure out the model capability. Both models predicted well (r 2 > 0.8) the cross-shore variation of the wave heights, crests, troughs, and setups when the nonlinearity is not too high (A 0/h 0 < 0.07 in this study). However, as the wave nonlinearity and steepness increase, the one-layer model showed problems in prediction and stability due to the error on the vertical profile of fluid velocity. The results in this study revealed that one-layer model is not suitable in the highly nonlinear wave condition over a fringing reef bathymetry. This data set can contribute to the numerical model verification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.