Abstract

In the present work a series of fatigue tests on Ti6Al4V SLM parts are analyzed via both SEM and confocal microscopy. On the one hand, fracture surfaces are studied, and a common pattern is found, formed by a series of different textures which show the complex crack front evolution from crack initiation in a particular internal defect to complete failure. On the other hand, fatigue strength is observed to highly depend on the defect where initiation takes place, so experimental observation of that critical entity is carried out. Both defect location within the specimen and shape are studied, considering the crack-like or blunt feature of every defect. Once experimental analysis is complete, numerical simulation is attempted. By making use of critical defect and residual stress measurements obtained experimentally, both fatigue strength and crack front evolution are estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.