Abstract

In this work, damage behavior of tungsten under high heat flux loads was investigated both numerically and experimentally assuming a single heat pulse with duration of 0.5s. Finite element simulations revealed that the thermal steady state was reached within several milliseconds after the onset of a heat flux pulse and tensile residual stress was produced during cooling providing the driving force for crack growth. The crack initiation and growth simulations and J-integral calculation at crack tips delivered consistent results on cracking mechanism. Electron beam irradiation tests on tungsten samples were performed, which confirmed the predicted damage behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.