Abstract

In this work, the influence of different high heat flux (HHF) loading patterns on the surface cracking of tungsten was investigated under edge-localized mode (ELM)-like thermal loads. Two numerical approaches were employed, namely, the extended finite element method (XFEM) and the virtual crack tip extension (VCE) method. Comparative assessment of initial cracking and crack growth was conducted for six HHF loading patterns (combinations of three spatial and two temporal variants) assuming the same deposited energy for all cases. A ramp pulse with a longer duration leads to slightly lower temperatures and stresses in comparison to a constant pulse with a shorter duration, and no significant difference in cracking appears for these two temporal loading scenarios. In the central part of the loading area, cracks propagate perpendicularly to the surface and the final length of these cracks is dependent on the applied power density. For both triangular and uniformly distributed HHF loadings, cracks initiated near the position, where the peak stress occurred at the surface, tend to kink from the initial vertical paths and then grow parallel to the surface. The driving force for this type of crack propagation is larger under uniform than triangular loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.