Abstract
High-confinement mode is a very prominent operation style for future fusion device due to its unique advantages. However, the conjuncted edge localized modes (ELMs) are very difficult to control so that divertor plates are very prone to suffer both stationary high heat flux (HHF) loads of long-pulse operating mode and transient shock loads of ELMs. Most previous researches focus on degradation of plasma facing material (PFM), however, as a layer joining PFM and cooling tube, the soft copper interlayer suffers concentrated thermal stress loads due to mismatched thermal expansion of PFM and cooling tube. Its thermal fatigue behavior under such coupled loads is also of great significance to structural safety of divertor component. With such a motivation, the reduction effects on fatigue life time of a typical interlayer of monoblock divertor under series of coupled HHF and ELMs shock loading conditions are investigated. It is found that: (1) The transient shock feature of ELMs loading is propagated into interlayer with less sharp pattern. The increase of damage induced by coupled ELMs loading is limited in single cycle, while the accumulated damage of multiple consecutive coupled loading cycles is increased nonlinearly. (2) Under the coupled HHF and ELMs loading, the fatigue life time of interlayer is generally decreasing. The magnitude of decrease is increasing nonlinearly with the magnitude of ELMs peak and averaged heat flux. (3) For three characteristic parameters of ELMs shock loading such as frequency, duration and peak heat flux, the peak heat flux and frequency are two parameters more sensitive to determine coupled reduction effects on fatigue lifetime of the interlayer, while for high frequency case, time averaged heat flux takes the lead.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.