Abstract
Advances in magnetic tape recording have produced media with magnetic layers as thin as 0.1 μm. In this article, a metal particulate tape with a magnetic layer thickness of ∼0.37 μm is compared to a standard thick media tape with a magnetic layer thickness of ∼4 μm. Measurements of the isolated pulse are made and shown to compare well with micromagnetic simulations. The replay voltage versus current is measured with a 4 μm track width, shielded magnetoresistive head at various densities. The thin tape shows better high density response at high currents than the thick tape. The simulations show that the transitions are sharper on the thin tape due to both the reduction in thickness, and an improvement in the particle orientation. The better oriented particles yield narrower pulses, thereby improving the high frequency response of the tape. Frequency response measurements are also taken with the magnetoresistive head, which yield a signal to noise ratio of ≳20 dB at 200 kfci. Last, overwrite performance versus current is compared for the two tapes plus a metal-evaporated (ME) tape with a 0.2 μm thick layer. A significant improvement in overwrite is seen on the ME tape.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.