Abstract

A commercial Hi-8 VCR was instrumented to measure the friction force between the rotary heads and tape, rms head output and signal dropouts to sub-/spl mu/s durations. Streaming mode experiments at design tension using metal evaporated (ME) and metal particle (MP) tapes were performed in which the tapes were subjected to repeated play/rewind cycling. Long wavelength waviness of the ME tape surface and a large number of sharper asperities on the MP tape surface affected the magnetic and tribological performance of the tapes. The friction force and head output generally increased, and the dropout frequency (number of dropouts/min) generally decreased as the tapes were worn smooth. Head-to-tape spacing and dropout frequency decreased more for MP tape, as compared to ME tape. On the ME tape surface, damage initiated at high points or bumps, which resulted in weakening of the metal coating at these locations. Cracks initiated at these locations grew (driven by longitudinal tension) laterally across the tape width and connected localized damage areas at tape failure after 840 play/rewind cycles. MP tape performance improved gradually through 1000 play/rewind cycles. Based on this study, ME tape is less durable than MP tape, and reduced waviness of the ME tape surface could further improve ME tape performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.