Abstract

In applications where weight saving and parts integration can be achieved, the Rover Group has been investigating the design and manufacture of components from composite materials. The methods used in the different steps in the design-to-manufacture cycle in the high volume automotive industry are relatively well known for a steel component, but are not so well established for a composite component. A design methodology for composites has been emerging in which a principal procedure is design analysis. One of the most established methods of analysis is that using the finite element technique, and this is being supplemented with experimental tests on prototypes using photoelastic analysis and stress pattern analysis by thermal emission, coupled with conventional strain gauge monitoring. Little work has been undertaken to correlate the results obtained from these different test methods and to compare the results with measurements made on an actual component. This paper presents some of the work undertaken concerning the analysis and testing of a composite automotive suspension arm. The results obtained from the three different analysis techniques are compared with experimental test results, and their accuracy is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call